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Affymetrix GeneChips were used to measure RNA abundance for
�13,500 Drosophila genes in young, old, and 100% oxygen-
stressed flies. Data were analyzed by using a recently developed
background correction algorithm and a robust multichip model-
based statistical analysis that dramatically increased the ability to
identify changes in gene expression. Aging and oxidative stress
responses shared the up-regulation of purine biosynthesis, heat
shock protein, antioxidant, and innate immune response genes.
Results were confirmed by using Northerns and transgenic report-
ers. Immune response gene promoters linked to GFP allowed
longitudinal assay of gene expression during aging in individual
flies. Immune reporter expression in young flies was partially
predictive of remaining life span, suggesting their potential as
biomonitors of aging.

One of the proximal causes of aging may be oxidative damage
(1–3). Oxidatively damaged macromolecules accumulate in

every aging organism examined, and oxidative damage is impli-
cated in the etiology of virtually every human aging-related
disease. Overexpression of the antioxidant enzyme superoxide
dismutase is sufficient to extend the life span of Drosophila
(4–6), and certain single gene mutations that increase life span
in Caenorhabditis elegans, Drosophila, and mouse correlate with
increased oxidative stress resistance (3, 7–10). Advances in
microarray technology coupled with recently developed bioin-
formatics techniques prompted a reexamination of the relation-
ship between aging and oxidative stress responses in Drosophila
(11, 12).

Materials and Methods
Microarray Data Analyses. Seventeen Affymetrix GeneChip Dro-
sophila Genome Array DrosGenome1 were used to monitor the
expression of 13,500 predicted transcripts from the annotation of
the Drosophila genome, by measuring fluorescence from gene-
specific oligos. After background correction and normalization,
transcripts abundance was estimated by using fluorescence signal
intensities. The Affymetrix microarray consists of 196,000 oligos
of 25 base pairs with a perfect match (PM) sequence, each
corresponding to a specific region of a gene. For each PM
sequence, there is also a corresponding mismatch (MM) oligo
that differs by one base (13). Background correction is one of the
key issues in analyzing microarray data. Affymetrix GeneChip
technology uses MM oligos to estimate the background signal.
Previous studies have shown that the information content of the
mismatch oligos is not well defined, and therefore a direct
subtraction of MM is unlikely to be useful. For this reason, a
background correction method based on oligo sequence infor-
mation was developed and implemented.

The key idea of the proposed background correction is the
ability to estimate the nonspecific components of PM and MM
signals directly from complete oligos sequence information,
available at the Affymetrix NetAffx Analysis Center (www.
affymetrix.com�analysis�index.affx).

It has been shown that the Langmuir absorbtion isotherm
thoroughly captures the kinetics of GeneChip hybridization (14).

The average interfeature distance along with the Affymetrix
GeneChip probe selection criteria prohibit significant oligo–
oligo interactions. Steric hindrance effects are negligible for
working concentration range (15). Thus, these effects are as-
sumed to be insignificant. Forman et al. (15) found that satura-
tion occurs within the 200–1,000 pm concentration range, which
greatly exceeds the average working concentration range used
for Affymetrix GeneChips. Considering the linear regime region
of the isotherm, we split the PM and MM signals into specific and
nonspecific components and propose the following model:

� PM � ISP
PM � INS

PM � KSP
PM[c] � KNS

PM[ns] � �1

MM � ISP
MM � INS

MM � KSP
MM[c] � KNS

MM[ns] � �2
, [1]

where K � exp(� �G�RT) is the reaction rate constant, �Gi is
the free energy of duplex formation, [c] is the specific concen-
tration, [ns] is the nonspecific concentration, R is a Boltzmann
constant, T is temperature, and � is a random term.

Introducing ratios of specific and nonspecific signals on PM
and MM, we obtain

Free energies of heteroduplex formation were calculated by
using a nearest-neighbor model (16), where the total difference
in the free energy of the zipped and unzipped states of a DNA
duplex can be approximated by

�G � �
i�1

16

�Gini,

where each oligonucleotide duplex is given by subscript i, the
number of dinucleotides of ith type is ni, and �Gi are the free
energies for 16 possible nearest-neighbor stacking interactions.
Although nearest-neighbor base pair effects in solution have
been extensively studied in the past, direct application of ther-
modynamic parameters obtained from solution is not suitable for
microarray data because of the numerous uncounted factors
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such as steric effects, RNA secondary structure, and probe–
probe interactions. Instead, we directly estimate these �Gi
parameters by fitting them to a publicly available spike-in study
data set conducted by GeneLogic (Gaithersburg, MD). The
GeneLogic spike-in study consists of a Latin square design with
triplicates using 11 bacterial controls on a human HG-u95A
version 1 chip with concentrations ranging from 0 to 100 pM
(http:��qolotus02.genelogic.com�datasets.nsf). Two sets of 18
parameters (16 free energies plus two initiation terms) were
separately fitted to the spike-in study data set. At maximum
concentration, the background effects are assumed to be insig-
nificant, so that most of the observed intensity is caused by the
specific component of the signal. Therefore; the set of specific
(SP) nearest-neighbor parameters was extracted from the max-
imum concentration point of the GeneLogic spike-in study data
set. Nonspecific (NS) nearest-neighbor parameters were ex-
tracted at zero concentration spike-in data assuming that the
specific component of the signal is absent.

When determining ��GSP, the difference in gene-specific
binding free energy of PM and MM, a set of SP parameters was
used: ��GSP � �GNS

PM � �GNS
MM � �Gi

MM, where �Gi
MM is free

energy of nearest-neighbor stacking interaction at the 13th
position of the mismatch. To estimate ��GNS, the difference in
nonspecific binding free energy of PM and MM, NS parameters
were used and the difference in the free energy of heteroduplex
formation in PM and MM was directly calculated as ��GNS �
�GNS

PM � �GNS
MM.

Once r and r* were estimated, the nonspecific fraction of PM
signal was subtracted according to the following rule:

PM � �PM � INS
PM if PM � INS

PM 
 0
1 otherwise [3]

The purpose of normalization was to identify and remove
systematic sources of variation so that comparisons between
chips could be obtained. The obscuring sources of variation can
have many different effects on the data. Unless arrays are
appropriately normalized, comparing data from different arrays
can lead to misleading results. A quantile normalization method
proposed by Bolstad et al. (17) was used, as implemented in
BIOCONDUCTOR (18). The purpose of the quantile method was to
make the distribution of oligo intensities for each chip in the
experiment the same.

Robust Model-Based Gene Expression Data Analysis. Currently, sev-
eral competing measures of expression have been developed,
including Affymetrix MAS 5.1 expression values, the dChip model-
based expression index, which is a multiplicative linear model
(19), and the robust multiarray average (RMA), which is an
additive linear model (20). RMA is based on a model fit that is
more robust than ANOVA for examining the significance of the
various factors in a multifactor model that is highly resistant to
extreme values. The specific model used was log2(corrected
PM) � grand effect � chip effect � oligo effect � error.

A robust linear model procedure rlm() was used, as available
in the open R- project, a language and environment for statistical
computing and graphics (www.r-project.org). A 17 (no. of
chips) � 14 (no. of oligos) matrix was constructed for each gene,
and the average measure of gene expression was calculated for
each group (Y, Old, O2).

Gene Expression Data Analysis. Significance analysis of microarrays
(21), a supervised learning software for genomic expression data
mining, was applied to the extracted gene expression measures to
test for differentially expressed genes. Results were subjected to
strict corrections to control for false discovery rate (FDR). FDR in
the 25° experiment was in [0.26, 1.39], leading to false significant

numbers in the [11, 61] range. FDR in 29° experiment was in [0.24,
1.09], leading to false significant numbers in the [21, 114] range.

A total of 913 genes were found to change with age, 593 were
changed in the O2 condition, and 251 changed in both O2 and old.
The significance of the O2 vs. Old overlap was calculated by using
Monte Carlo simulations. In each simulation, we randomly
assigned observed intensities were made to a set of D. melano-
gaster genes for two conditions, and the overlap was determined.
The probability of the observed overlap arising by chance is
infinitesimal under the assumption that all genes are liable to
age-specific changes. To assess the potential contribution of a
smaller gene pool, one can diminish the number of genes that are
capable of going up�down with age while simulating the overlap.
If the set of these genes is reduced to 3,000 (� 21% of the whole
genome) the P value is still highly significant at 1.5 E-10.

Additional details are available in Supporting Text, Tables
1–12, and Figs. 5–7, which are published as supporting informa-
tion on the PNAS web site.

Results and Discussion
To reduce inbreeding depression of longevity, f lies were male
hybrid progeny of two common laboratory strains. Young flies
(‘‘Y’’) were 10 days old, old flies (‘‘Old’’) were 61 days old
(�50% survival of the cohort, Fig. 7). Oxygen-stressed (‘‘O2’’)
were 3-day-old flies subjected to 100% oxygen atmosphere for 7
days (�50% survival of the cohort). The 100% oxygen stress was
chosen because it appears to be a more specific oxidative stress
than paraquat, which may also deplete NADPH (22, 23). Each
condition (Y, O2, Old) had five to six replicates of 30 flies each.
RNA was isolated from each replicate and used to prepare probe
for one GeneChip.

On the GeneChip each gene is represented by 14 oligos (of 25
nucleotides each) that correspond to selected regions of the
gene’s transcript (called PM oligos). For each PM oligo, there is
a corresponding MM oligo that differs by one base near the
center. Fluorescently labeled probe was generated from the fly
RNA samples, and hybridized with the chips. The amount of
fluorescence intensity (‘‘signal’’) associated with each oligo will
therefore have a specific component due to binding of the
specific gene’s sequences in the probe, as well as a nonspecific
component due to the binding of other (background) probe
sequences. Because the MM oligo will have a lower affinity for
the specific gene’s sequence, its signal can be used to estimate
background. However, the MM oligo will also have an altered
affinity for background RNAs, and this must be taken into
account. For example, some MM oligos will bind total probe
sequences better than the corresponding PM oligos. Therefore,
if one simply subtracts the MM signal from the PM signal (PM �
MM), it leads to negative expression values (24). By applying a
physical model of the hybridization process to complete oligo
sequence information available at the Affymetrix web site, it is
possible to calculate and subtract only the nonspecific compo-
nent of PM (PM � bg).

The effect of the background correction is presented for four
representative genes (Fig. 1 A–D). A robust linear model was
applied to each of the initial models (PM, PM � MM, and
PM � bg) and the resultant gene expression levels are plotted
for each chip. Chips 1–6 are Y, 7–12 are O2, and 13–17 are Old.
For the shsp gene l (2)Efl, PM � bg is more sensitive to gene
expression changes than either PM or PM � MM (Fig. 1 A).
For the hsp40-class gene DnaJ-like-1, PM � MM and PM � bg
performed similarly, suggesting that, in this case, MM was a
fairly good estimate of the nonspecific component of PM (Fig.
1C). For the immune peptide gene Defensin (Fig. 1B), the
PM � MM signal is very noise-prone because of variance in
MM, whereas PM is insensitive to the increased expression in
O2 (chips 7–12). In contrast, PM � bg reveals increased
Defensin expression in both O2 and Old. Finally, for Alkaline
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phosphatase-4, PM � bg reveals changes in gene expression
that are not pronounced in PM only, and are likely to be
overestimated by PM � MM (Fig. 1D).

Pairwise comparisons between Y and Old and between Y and
O2 for all 13,600 genes identified genes that were up-regulated,
down-regulated, or unchanged in each case. Comparison of the
responses to aging and oxidative stress revealed common and
unique features (Table 1), and results are summarized in a Venn
diagram (Fig. 1E). An almost identical aging response was
observed with flies cultured at 29°C, where life span is much
shorter (Fig. 2B and additional data not shown). Expression
levels for 12 representative genes were confirmed by Northern
blot, and no discrepancies were observed (Fig. 2 and Table 11).

Both aging and oxidative stress were characterized by up-
regulation of hsp genes, antioxidant genes and immune response

genes (Figs. 1 and 2, and Tables 1, 2, and 12). The increased
expression of hsp70, hsp22, and hsp23 during aging has been
previously analyzed (25–28). Both hsp22 and hsp70 are tran-
scriptionally up-regulated during aging, and this requires heat
shock elements (HSEs) in the promoters. The time course of
hsp70 induction during aging is accelerated by mutations in
catalase or Cu�ZnSOD, suggesting that it is a response to
oxidative stress. Hsp22 exhibits one of the largest known in-
creases in expression during aging, but its response to oxidative
stress had not been previously tested. Among the largest in-
creases in expression observed during aging were those for
immune peptide genes, including Metchnikowin, Defensin, and
Attacin A, as identified by GeneChip analysis (29). Aging-related
induction of the PGRP-LC gene involved in immune response
had previously been suggested by studies of a P element ‘‘en-

Fig. 1. GeneChip analysis of gene expression changes during aging and oxidative stress. Shown are values predicted from background correction algorithm
(red), PM-only (blue) and PM-MM (green). (A) l (2)Efl. (B) Defensin. (C) DNAJ-like-1. (D) Alkaline phosphatase 4. (E) Venn diagram of differential gene expression
in O2 and Old flies; data are from Table 1.
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hancer trap’’ inserted at that locus (30). Strikingly, in the present
study, the majority of the known immune response genes were
found to be induced during aging, and many of these immune
response genes were also induced in response to oxidative stress.

The computational approaches revealed additional features of
the aging response that were shared by oxidative stress. These
included the up-regulation of the entire purine biosynthetic
pathway (12 genes) including ade3 and Nmdmc (Figs. 2 and 5 and
Table 3). In contrast, pyrimidine pathway enzymes were un-
changed. Purine biosynthesis may be increased due to the
preferential susceptibility of purines to oxidative damage and a
need to replace them, and�or may reflect a particular need for
additional purines, such as in production of ATP or NAD(P)H,
in old and oxidatively stressed cells. The purine derivative urate
is an antioxidant required for normal oxidative stress resistance
and life span in Drosophila (31), and the purine nicotinamide has
recently been implicated in life span regulation in yeast (32).
Aging and oxidative stress both caused up-regulation of Cct-1,
which encodes the rate limiting enzyme in phosphatidylcholine
synthesis (33). Cct-1 enzyme is activated by oxidized lipids (34),
and Cct-1 gene expression level may affect Drosophila life span
(35). Aging and oxidative stress responses also shared the
down-regulation of numerous proteasome subunits and other
proteases (41 genes), alkaline phosphatases (eight genes), and

triacylglycerol lipases (four genes). The decrease in protease
expression might be related to the decreased rate of protein
synthesis and turnover with age reported for Drosophila and
other organisms.

The data demonstrate a large overlap in the aging and
oxidative stress responses (Fig. 1E), and are therefore consistent
with the hypothesis that oxidative stress is a significant compo-
nent of aging. If every gene is considered, the probability of
observing this overlap by chance is infinitesimal (Materials and
Methods). Many of the changes in gene expression during
Drosophila aging are conserved in other species, where the same
(or related) genes exhibit the same response. Examples include
the up-regulation of stress response genes, including GSTs,
hsp70-, hsp60-, hsp40-, and small hsp-class genes, in Drosophila
(refs. 11 and 29 and this study), C. elegans (36), mouse (37, 38),
and human (39).

The total percentage of tested genes found to change during
aging was 7%, which is similar to the 9% recently reported for
another GeneChip analysis of aging (29). The overlap between
the aging and oxidative stress responses is indicated by the fact
that 38% of the genes whose expression changed during aging
were also affected by 100% oxygen in the same direction. This
is similar to the 33% overlap reported in an earlier DNA
microarray comparison of the aging and paraquat responses that

Fig. 2. Northern analysis of selected genes (even-numbered lanes, 5 �g of RNA � 1�; odd-numbered lanes, 10 �g of RNA � 2�). (A) Flies cultured at 25°C. Shown
are Y (lanes 1 and 2), O2 (lanes 3 and 4), and Old (lanes 5 and 6), as indicated. (B) Flies cultured at 29°C. Shown are Y (lanes 1 and 2) and Old (lanes 3 and 4). (C)
Time course Northern of flies cultured at 25°C. RNA isolated from the same cohort of flies at increasing ages, as indicated (lanes 1–12). 60� is 60-day-old flies from
an independent cohort (lanes 13 and 14). Quantitation is presented in Materials and Methods and Table 11.
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surveyed about one-third of the genome (11). However, the
latter study reported that only 0.6% of genes tested changed
during aging. This difference is likely due to advances in tech-
nology and statistical methods.

In a recent GeneChip study of aging and dietary restriction,
50% of the genes affected by aging were also affected by
dietary restriction in the opposite direction (29). One way to
interpret these data are that the gene expression pattern
characteristic of aging is accelerated by treatments that accel-
erate aging (i.e., oxidative stressors), and delayed by treat-
ments that delay aging such as dietary restriction. One of the
current models for the mechanism of dietary restriction is that
it reduces oxidative stress (3).

Differences in the aging and oxidative stress responses were
also observed (Fig. 1E). Unique to aging was a small (1.5–2 fold),
but across-the-board, down-regulation of energy metabolism
genes. These included oxidative phosphorylation (42 genes),
ATP synthetase (nine genes), and the tricarboxylic acid (TCA)
cycle (13 genes). This might be related to the reported loss of
normal and functional mitochondria with age (40–42). De-
creases in energy metabolism gene expression with age have
been reported for Drosophila and mouse (11, 29, 37). Other
differences were the down-regulation of different sets of trans-
porters and the down-regulation of additional proteases in O2.
There are at least two nonexclusive possibilities for the differ-
ences observed between the aging and oxidative stress responses:
first, the acute stress of 100% oxygen will be an imperfect model
for the chronic oxidative stress of aging; there are several
different types of ROS with various subcellular sources, targets
and defenses. Second, the aging pattern of gene expression may
include changes due to additional, as-yet-unknown causes of
aging in addition to oxidative stress.

Aging in Drosophila has been reported to be associated with
the increased expression of innate immune response genes as
assayed by GeneChips or an enhancer trap (29, 30), and that
result was confirmed by GeneChips and Northern blots in these

experiments (Fig. 2 and Table 1). Aging was characterized by the
dramatic induction of antimicrobial peptide genes, with in-
creases ranging from 5- to 100-fold. Oxygen stress samples had
a smaller but significant increase in many of these genes, typically
2- to 5-fold. Time course Northerns confirmed the progressive
induction of heat shock protein and immune response genes with
age, and revealed slightly different patterns of accumulation
(Fig. 2C).

Reporter constructs consisting of the hsp22 promoter (�314 to
�275) and the hsp70 promoter (�194 to �276) linked to lacZ have
previously been analyzed for their expression during aging (25, 27,
28). This hsp22 reporter is abundantly expressed and exhibits a large
induction during aging, whereas the hsp70 reporter is expressed at
low level and yields a small induction. The same relative pattern of
expression was produced by 100% oxygen (Fig. 3A), thereby
providing additional evidence for the similarity between the aging
and O2 responses. In contrast, heat stress causes a preferential
induction of the hsp70 reporter (Fig. 3B).§

One motivation for the current study was that changes in gene
expression characteristic of aging might prove to be useful as an
independent measure of aging rate, perhaps one faster and more
convenient than measuring life span. Immune response genes
exhibited the largest fold change in expression during aging, and
were chosen for in vivo analysis. Immune response gene pro-
moters (Drosomycin, Drocosin, and Metchnikowin) linked to GFP
(43) allowed longitudinal assay of expression during aging in

§The �194 to �276 hsp70 reporter yields a smaller fold induction in response to O2 stress
and aging than is observed here for the endogenous hsp70 genes in the GeneChip and
Northern data. This difference may be caused by the deletion of some distal promoter
element(s) in this �194 to �276 hsp70 reporter construct, and�or the fact that the
GeneChip and Northern assay all five endogenous hsp70 genes, whereas the reporter is
single copy and generated specifically from hsp70-87C1.

Fig. 3. hsp-LacZ reporter activity in heat-shocked and oxygen-stressed flies.
Three independent transgenic lines each with hsp22 promoter sequences
�314 to �275 fused to lacZ, and three with hsp70 promoter sequences �194
to �276 fused to lacZ, were assayed as indicted. �-Galactosidase activity was
quantitated in extracts of control flies (filled bars) and stressed flies (open
bars) for each strain. (A) One hundred percent oxygen-stressed flies. (B)
Heat-shocked flies.

Fig. 4. Survival and GFP fluorescence in Drosomycin, Drosocin, and Metch-
nikowin reporter strains. Time points for GFP assay were chosen to partition
the life span roughly into thirds. Experiments were done in absence of
antibiotics (red) and presence of antibiotics ampicillin and doxycycline (blue).
Black bars indicate the median. (A) Drosomycin survival. (B) Drosomycin GFP
activity. (C) Drosocin survival. (D) Drosocin GFP activity. (E) Metchnikowin
survival. (F) Metchnikowin GFP activity.
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individual f lies. Each fly was assayed at three time points for
total body levels of GFP fluorescence by using video image
capture. The assay itself was found to have no significant effect
on life span (Fig. 6). Reporter expression in young flies was
negatively correlated with remaining life span in the Drosomyc-
in–GFP and Metchnikowin–GFP strains, as determined by using
both ANOVA and regression analyses (Fig. 4 and Materials and
Methods). Addition of antibiotics to the culture medium de-
creased reporter expression, particularly in young animals; how-
ever, reporter expression was still negatively correlated with life
span (data not shown).

The Drosophila innate immune response has been well char-
acterized (43, 44), and essentially the same set of genes induced
by infection was up-regulated during aging. This may reflect an
increased pathogen load with aging, caused by loss of function of
the immune system, and�or breakdown of other barriers and
defenses against pathogens such as the lining of the gut and

tracheoles. Consistent with this idea, old Drosophila are less able
to suppress growth of introduced Escherichia coli (45). Patho-
gens and immune gene expression have recently been implicated
in the regulation of life span in C. elegans (46–48). Also possible
is a more direct stimulation of the immune response signal
transduction pathways by reaction oxygen species and�or heat
shock proteins as has been observed with the homologous
mammalian NF-�B pathways (49–51). This would be consistent
with the low-level immune peptide gene induction observed in
the oxygen-stressed samples, as discussed above. The identifi-
cation of immune response gene reporters that are partially
predictive for life span in live Drosophila may facilitate a number
of future experiments, including genetic screens to identify
modifiers of aging rate and immune system function.
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